实践证明,无功功率所产生的电能损耗,主要是发生在输配电线路上的,对于那些距离电源较远,线路电阻R比较大,防爆振动电机运行功率因数低的终端设备,所造成的无功损耗就更加突出了。
防爆振动电机常见的冷却方式有:
自然冷却:自然冷却的防爆振动电机不用风扇,而是通过空气的对流和辐射冷却的。
自冷冷却:在自冷冷却时,冷却空气由安装在转子上的或由转子拖动的风扇吹送。
防爆电机的底座是电机中十分重要的部件,它在各种工况下承受着较大的载荷,若局部的应力过高会导致结构破坏,甚至会引起主轴非正常摆动和机组强振,缩短电机使用寿命,同时带来重大损失。
传统防爆振动电机的设计方法是采用材料力学的简化计算与经验设计相结合的方法来决定其强度,虽然这种设计方法经过实践证明具有一定的可靠性,但存在设计周期长、结构欠合理、设计过于保守、余量偏大等弊端,
这样常造成防爆振动电机底座过于笨重,且由于钢材的大量使用,使得其成本偏高,导致产品缺乏竞争力,所以有必要在保证其使用性能的前提下,对其结构进行轻量化设计。
防爆振动电机有限元法与优化设计是现代设计方法的主要内容,对防爆振动电机底座进行有限元分析,得出其在各种工况下的受力和变形情况,继而对其进行优化设计,可以使底座的结构和性能更加趋于完善。